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AN EXTENSION OF THE WNWERG-TYPE LENSES
I

INTRODUCTION

A new catagory of lens types has bco••ae £vasibie In- the microwave region through
the development of dielectrics whose indices of refraction vary through the medium in an
orderly fashion. The variation in ihe index ras been obtained by controlling the density
of the dielectric material or by loading P, low-dielectric-constant material with suitably
placed bits of a substance having a high d;lo-atric constant. Two oter techniques, tpplt-
cable to the region between a pair of conducting plate#, achieve a variation in the effective
index of refraction by either altering the spacing between an essentially flat pair of plates
or changing the curvature of the mean rurface between a curved pair of parallel plates.

Samia t)oarotical work of LunvberI on the opticA in a vwriable medium han thum
acquired realisations as microwave antrenas. Th-c a t•ternas all stem from a perfectly
focusing lens wh;ae existence Luneberg exhibited. He s'emoed that if a dielectric sphere
has an index of refraction n that satisfies the relation

2i a2- p, (1)

p being the distance from the center of the sphere no--so that the radius is one,
origen all the energy entering the sphere at a point on its ;-rlfce is focused in a diametrically
Qp),osite direction. Perfect scanning is then possible, .-,,' as the source moves on the sur-
'-• of the sphere the resulting diffraction pattern undergoes a corresponding rotation with-
out distortion.

The behavior of these "perfect* lenses is diagrammatized in Figure 1. Nutable
success has been obtained with two-dimensional lenses that couple the radiation character-
istics of a line source and scanning throughout a plane without deterioration. Figure 2 is
a schematic of one levis of W6i type designed by Peeler." The plate spacing is varied with
position in order to achieve tha proper variation of n. Another lens (Figure 3) was first
investigated by Rineart. 3 Although two-dimensional in performance, it requires three
dimensions for it- const.'•.t0ca j. The surface is chosen to provide the proper path lengths
for the optical rays which follow geodesics of the surface.

Luneberg, R. K., "Matheýmatical " i(--orv of Optics," Brown Univ. Lecture Notes,

Providence, 1944

2 Peeler, G. D. M., Archer, D. j., 'A Two-DiLmensionot Microwave Luneberg Lens,"

NRL Report 4115 (to be published)
3 Rinehart, R. F.. "A Solution o[ the Rapid Scanning Problem for Radar Antennae."
journal Applied Physicm., 19:860-862 (1943)
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Figure I The spherical lens of Luneb.- 3-,;
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Figure 3 - A two-dimensional curved-surface lens

Mechanical'complexities, however, attend any rapid scanning by such lenses due to
the relatively large pat~h t"he feed must follow, restricted as it Is to the surface of the
lens. Rinehart 4 has recognizeid the advantages of a reduction in size of the feed circle
and has obtained that reduction by a virtual-image technique for his double-plate curved-
surface version of Lur-br's lens. Although Rinehart's lens acts as a two-dimensional
lens, energy in one plane only being collimated, a third dimension is essential for its
construction and in particular for the technique he uses to reduce the radius of the feed
c ircle.

A method for achieving a similar reduction in size, applicable to the gerserdl class
of Luneberg-type lenses, may be of sofme interest and will be presenrted in the following
pages. A formula will be obtained for the proper index of refraction of a spherical lens
that focuses energy from a source inside the lens !n a diametrically opposite direction.
Aithough this result will appear as a special case of the solution of a more general problem,
it is the result of greatest practical interest contained in this report. Of course, only a
portion of space may be. smme-_1 -,-Ark of the lens must be removed to provide the
source wiUt ireedom of motion (Figure 4). There is no such restriction for two-dimensioaz.1
lenses, however, as the source may pierce the top or bottom surface of the plhtes.

4 IRilehart, R, F,, "A Family of Dr.igns for Rapid Scanning Rada,- Antennas," Proc. I.R.E,,
40:686-688 (195d!)
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The prbe was frmdi rae eeaiyt opeettefruaionoI

the studyFigof a s pherical lens wxcthediytaepoir source rdcst w-iesoa rb

lem provided that the index of refraction depends only on the distance from the center.
A plar'e section of the sphere containin4 both the point of excitation and the ccnter determines
a circular lens with radial-varying index whose performance as an optical system in two-
dimensional space completely describes the spatial performance Mf the spherical lens.
The line through the center and the source Is an avis of symmi~etry of each lens and a phase
front formed by Uh-_ spherical lens is generated by the corresponding phase front of the
cizc%4ar lens under rotation about the axis, The problem considered by Luneberg was the
characterizztiorn of a circular lens such that rays from a point outs-Ide the lens~or on Us~
circumference, would form contracting circular or linear phase fronts. The center of the
phase front was to lie outside the lens, on the opposite side from the source, and on the
line passing thro- n center of the lens and the source. The line~ir phase front was
obtained as a limiting case of circular piase fronts. (Luneberg's oescz'ption was not
phrased tit terms of phase fronts.)

The extensions to be made In the present paper permit the source to lie within the eie~s
for the generation of linear phase fronts or the center of circular phase fronts to lie wittMn
the hens when~ excited by a source 3n the boundary of the lerus. The center of the circular
phase fronts Is not requireýd to lie on the line through the source and the center of the lens,
nor Is there a similar restriction on the orientation of the linear phase front, This implies
that uruiess A sul1tabh-y directive source Is used, there is a second set of phase fronts p~resenjt
for the two-dimensional lens so placed to preserve the symmetry of the lens-source system.
The corresponding lh ~a~w ens %ould generate toroidal phase fronts of little
ý,hycaka irtierest ,jave for the special cases of planes, spheres, and cylinders.

The methocfs used to obtain a solution are somewhat d"iffprent from those of Luneborg.
Attention is directed to the phase fronts desired rather than to the paths followed by optical
rays. An integral equl.tion expresses the conditiion that the optical path length from the
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source to the desired phase front is the same for all rays. A solution of the integral equation
yields the proper index of refraction to insure that the desired phase front is indeed a true
phase front. The orientation of the phase front is determined by the path followed ' a
parUicular ray. The three special cases noted above are then examined in greater detail.

TRE INTEGRAL EQUATION

Suppose, for convenience, that the circular lens to be examined has unit radius. Let
a polar coordinate system be imposed with the pole at the center of the circle and the
source lying on the negative polar axis at PO a distance p0 from the pole (Figure 5). In
the general discussion p, will not exceed one and, for circular phase fronts, only the
case pa = 1 will rbe considered fully. The Index of refraction n is a function of p alone,
being independent of the angular coordinate,). It is assumed that n is continuous at all
points except for isolated singularities and has the value or.e outside the circle. Let P.
be the point where an optical ray from PO emerges from the lens and denote by r the acute
angle betw-en the ray and the radial line at P,.

rI

~1

Figure 5 - The geometry of the

circular lens

If circular phase fro~nts are to be generated, let P (•• be thei~r center with • • 1
(F• .... , Consider the particular phase front that lies on a portion of the circle that is

, an exterior tangent to the lens at, say, T'. Let Q be the point on it pierced by the ray from
S~P 3 . Simple trigonometry shows the distance 15p, to be cos r , y~os• r - ',+ ji2 . The

ambitguity in sign may be resolved by specifying the portion of the circle on which the
phase front is to lie. If it is on part of the semicircle RTS, whose midpoint is T, the positive
signl is chosen, while the complementary semicircle RT'S corresponds to the negative sign
before the radical. Tho distance P, Q, that is, the opt!cal length from P3 to Q, since in this
region n = 1, is

PQ=I +•-co •''; Vos=r -1÷ •(2)

=,,
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The optical length from P. to P. may be expressed as

SPr P3 n(p) ds,
3 PO

the line integral being evaluated along an extremaL.

r

R

Figure 6 - ;ircular phase fronts

The optical length from Po to the desired phase front must be the same for all permis-
sible rays and if it Is the same, the desired p! ase front will be the true phase front for those
ra-._ An interpretatik n of this requirement in terms of the path lengths given In Equations
(2) and (3) leads to the integral equation

n(p) ds 4. CO cosy *rCO' - + (4)

The constant k v/2 (written in that fn-. f-r "&ter convenience) has ,bsorbed both the con-
.tant value cf the total path ±engih and the constant 1 + j of Equation (2).

A similar integral equation may be developed for the circular lens generating linear
phase fronts (Figure 7). In this case, Equation (2) becomes

P, Q =- I - cos (5)
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while Equation (3) is fe-mally the same. The integral equation is then

pk [
n(p) de =--+COST. (6)

The same methoas may be used for solving Equations (4) and (6) and so, for simplicity,
they will be treated simultaneously as

n(p) ds COS r + •7• _I + W. (7)
0

The number vq may have the value +1, -1, or 0, the first two correspondi!ng to circular
phase fronts and the last to linear phase fronts.

IN'VERSIOF Or ThE INTEGRAL EQUATION

't is well known in the calculus of variations that an extremal of the integral ofI
Equation (7) (whose integrand is without explicit dependence oi rt) is a solution of

n p = siniI 4 +T : (8)

that passes through P0 . The appearance of sin r in Equation (8) 1 ,•sires that one ol the

twc solutions through P. also passes through P, in the proper direction, the other solution
being its symmetrical image with respect to the line 0 = 0. Of course, implicit in the
derivation of Equation (8) is the assumption that p and p' are well-behaved functions of i,
the prime denoting differentiation with respect to t9 At an extremium of p, p' a 0 and
the ray is perpendicular to a radial line. ,From the continuity of n and the circular sym-
metry of the lens, It is immediately apmrent that the path of the ray and its extension
through P. is symmetric with respect to this radial line. If the path had more than one
extremum and hence more than one line of symmetry, it would be impossible for the ray
to leave the lens.

Only those rats will be considered along which p as-tumes an extreme, necessarily
minimurn value at, say, P, (Figure 5). Let P. be the image of P. in the line OP3 . Since I
OP, is a lne of symmetry of the ray,

Pn(p) ds f J n(p) tie. (9

Equation (7) may then be written as

P1
2 Jn(P) ds + n(p) ds 2 + COS T+ n 1" '. (10)

P, P2

I..o.iy those lenses are ,oughst f3r whitch p n(p) is a properly monot,'ntc fune#i.-a of p,
then Equation (10) may be converted to an integral equation of the type :-_• •-I&ed by 4
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Abel, nawely,

f' (v") ' ,(v) d,,.f t ? + fi,,.)
.(11)

through the transformations

t = cos, , (12)

v - 1- n2P 2 , (13)

f(v) dv + n'p dp= 0, (14)
f(v), O ~Po~p (15)

g(v) P<P
S 0, P < P < .

One way to invert Equation (11) is to regard it as a convolution. The Laplace trans-
form of eaci. member yields

r/ L f(v) +g (v)] ki 7r + i +~ (16)1-2

The inverse transform then shows

f(v) + g(v) k +. + S(v) (17)
2Vv

where S(v) is the step function

S(v) = 0, v < 1 -08(i)

U1, v > fill

THE IN1)EX OF REFRACTION

The discontinuities of Equations (15) and (17) introduce some complexities for circular
phase fronts. For this reasor and also to achieve some simplification in Identifying k with
the orientation of tie phase front, a solution will be carried through when n le 0 only if
po = 1. This implies that for circular phase fronts the sourice is to lie on ihe circumference
of the lens. With this restriction, Equations (15), (17), and (18) may be combined to give
foi circular p-ase fronts (ni O)

r k + , 0 < n plp ;
f(,) (4 Yv 4)

k I
+i p<n p,<l;

and for ltno;a" P4h7ie fronts (ij ý: 0'

f(v) 4 (20)
f'< p, .
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Equation (14) may h rewritten as

0+ AR . (21)

Its solutions for the various forms of f(v) given in Equations (19) and (20) are

f(v) k a,- p* ('(np)]k (22)

k+ I kN) - ++, a,n ,p[F(np)] (23)4W

f(v) +-- + a, , k(np) (24)

f~) k I . 1 9 kf k_ , "0f V("P/J ; j0 -) 1 + J.' a~n D nP (25)

! wherea
heF(rnp) =1 p (26)

"The constznts aI must be chosen to insure the continity of n.

A convenient parameterization of n and p may be Introduced by

n0p a sin* (27)

for wVth 0 so defined

F(np) =ot (28)

The indices of refraction then take the forms discussed below. For convenience there
is also not.ed the relation between k and 3 ,the angular orientation of the phase front. The
derivation of this relation appears in the following section.

Case 1. 17 1. A phase front forms part of the semicircle RTS (Figure 6) whose
center Is at ( 0,,), 0 < 1. "1 source is at (1 ).

n ailt (,0/2),
Pa sin*

.0( < ~ .are sinj (29)

p -'sin 0 tank (0/2) , 0 (30)
ri .rain 0 cotk (012), ,c...,

k = 2- • .(31)

Case 2. i = -1. A 'phase front forms part of the semicircle RKI'"S (Figure 0) whose
center 's at (p,,), 0cjp) 1. The source is at (1,n).
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0"< O0 garc sin p ; (32)

Vefi in 0 tan (,/2)

arc uin < w/2; (33)
n kVsn 0cot~k(6/2),J

k- 2- 2 3. (34)

Case 3. n - 0. A phase front forms part of the line tangent to the lei.d at (1,•)
(Figure 7). The source lies at (p00,), O<p0 4 1.

p. min cot (Y)

p. sin tanok (#/2),
SO P (36)

nu cot k (/2) ,

k. 1- 2 • (37)

In each ":se., not all the rays leaving the aource gene~rate the phase front st•t~ed. It
thcý region abo~ut the source he divt&ý:.Oin'to quadrants aii Indicated in Figuire a wItV;

0 ý C n . , - -- / S - 0 - 1 ,, .11 - - - 4; - - 1 - c

;for nd.ý andW -,
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in the first quadrant contrl, .. t. to the prt-cua•r pha;e front considered unless 0 is 0 or
w when rays from the fourth quadrant also are effective. Fourth quadrant rays form a
phase front symmetrically placed wiN. espect to the axis of the len -source sy L ,
line J * 0). Along rays emerging in the other two quadrants, either Equat'ins (2) and (8)
are incompatible in the real field or p does not reach a minimun .... reqired in
Equation (9), hence the preceding analysis does not predict their behavior.

Si ~ PQUADAN

II
O UAD ANT 4

i rQUA DRAN T3

Figure 8 - Division of the rays into four quadrants

DETeRMINATION OF THE CONSTANT

The value of k is most readily latermined by an examination of a marglrial ray. For I
Case 3, this i6 a ray leav-ing the .ou.c, i" dArecatin perpendicular to the polar axis. For
the first two cases, it is a ray tangent to the circular interface between the two regions of
the lens. When the parameter 0 is introduced into Equation (8), the differential equation
for L•he rays, there ;re slight differences that separate the circular and linear phase-front
cases and it may be clearer to consider the two instances separately.

Cases I and 2. The ray lies entirely in the outer region where n is determined by
Equations (30) or (33). Equation (8) becomes

d =- sin (coti + k cec) d0. (38)
Van ` ;4 r

The minus sign selects the marginal ray that leaves the source in the first quadrant. At
Sh_ r•.l nt nf tanzencv of the interface, ,o' = 0 and Equation (8) implies tht 0 ý 7 at Ohat
point. But the -pont of tangency is the midpoint of te ray (Figure 9), and ihere 0 - J4 1"
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At P4 ,4 = 4 ',d * -/2. A, . .- -io ..n; An.ItJon (3•) b@hteen these pairs of limits shows

-0=(k + 1) v/2 - T. (39)

Since • - sin r, it follws that td a + r/1 - 'r and- Equations (31) and (34) are thus immediate
consequences of Equation (39).

\ / i

Ijs

Figure 9 - The marginal ray for
circular phase fronts

Case 3. Here again the ray lies entirely in the outer region where n is determined
by Equation (36). Equation (8) is transformed into a differential equation identical with
Equation (38) if the number 2 on the left side is replaced by a unit multiplier. When

w, p'= 0 and hence from Equation (8), -= r. Az 4, j = 0, and 0 a v/2. An integration
of the modified differential equation shows

v,- , (k - i) f/2 - T. (40)

The inclination of the normal to the phase front is ' - (Figure 7), and Equation (37)
follows directly from Equation (40).

PLANE, CYLINDRICAL, AND SPHERICAL PHASE FRONTS

As has been previously observed, the performance of a spherical lens may be
determined from its circular analogue. The three-dimensional phase fronts in general
lie on toroidal surfaces whose axis passes through the source and the center of the !ens,
z.nd whose generators are the two-dimensional phase fronts already considered, There
are three spherical lenses whose phase fronts are of especial physical interest and P%
which n may be expressed in simple algebraic terms.

sn Case 1, k 1-, 1n A = n nd the ;n•ar pha frnnt Iq np.rwndicular to the axis
of symmetry (Figure 10). The phase froat of the corresponJ!ng spherical lens lies on a



p oe. IEquatInrms (3h) and (36) may be replaced by

n =,I 0 (pPPo (41)

n =, P: O : (42) •

This reduces to Equaton (1), the limiting case considered by -,uneberg, when po z 1. An

integration of Equation (8) using these values of n shows that the paths followed by the rays
lie on the -ellpses

p, sin' -r

- _ocoo 2r ca oPP 0 ; (43)

and

sin I po < p 4 . (44)A
P cooerecoos-

The value of Or is chosen to insure continuity at p = po and is given by

pa- sin 7r

a O Cos 7 (45)

The circular aperture of the lens is determined by the points where the marginal rays
pierre the plane phase front. Its diameter Is

D 2 .7 0 -P (461)

Figure 10- Perfectly focusing, spheri-
cally symmetric lens capable of *can-
ning one-seventh of space (±450). The
radius of the feed path is o.ne-third
the diamc•.c of thc npertro

9' W S
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A cylindrical phase front (Figure 11) may bo obtained from Case 3 if k 0 C, tor then
w vr/2. There is no loss in generality in taking p0 - 1lfor Equationrp (36) reduce'to n 01.

Equation.' (35) become
n Wup. (47)

'rho Pothts followued Dy tho ~yx 110 on III# OquRlunuI6r hYi~rbolso
P' win fresc (r UP2~. (48)

Figure ti I Spherical lens that convert& a
point source into an apparent line source

A lens that essenrtially rever-!es the direction of the rays from a poInt source while
matn~tahirig spheri.;ai aphise :ontE~ (fiure,12) may be obtained from Cztý I withs 0.
If, for simplicity, I ~ then from Equations (29)

flhVT(49)

(cf. Equation (42)]. The paths followed by the rays lie on the ellipses

si'



IWAVAL MRSEARCH LASOSRAIORY

Figure 12 -Spherical lens that acts as an
infinit. reflecting plant

'M- mne~thcs developed in the precedisig discussion may be. sGI~iled to at•-" -- Ii7~
c~ný:!-rnesif a suitable phase front of the con.-riience is selected and the pthaz -

P:A%45r 1 u Idenatifted. F~or such generality, howev'ir, the determination of the orientation o~f
:z 4~.asei fiont is Pecomp1bshed differently.
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